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Abstract 

Overpressure time history data from warhead blast experiments yield peak overpressure P 
as a function of spatial position. 

Dr. Owen Litt has proposed a model for P based on the peak-overpressure characteristics of 
a bare spherical charge. The direction-independent peak-overpressure function for a bare 
spherical charge is modified to have nonspherical level-surface structure by specifying surfaces 
of constant peak overpressure. This introduces a directional component into the model. 

In this report, the original formulation is refined and generalized and a mathematical model 
and computer code are presented to evaluate the function Such a computational device is 
required for model parameter estimation and experiment design. 
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1. Background 

Over-pressure time history data from warhead blast 
over-pressure P as a function of spatial position. Dr. Owen Litt 
for P based on the peak-overpressure characteristics of a bare 

experiments yield peak 
[l] has proposed a model 
spherical charge. In that 

model, the direction-independent peak-overpressure function for a bare spherical charge 
is modified to have a level curve structure with a specific nonspherical functional form. 
This induces a directional component into the model. 

It is necessary to combine the peak-overpressure function representations of the 
bare spherical charge and an arbitrary level-curve structure to produce the required 
mathematical model. This report details the solution of that analytical problem and also 
an explicit solution to the problem of level-curve model specification in general, and so 
serves a twofold purpose. The development of a general theoretical framework for solving 
such model-specification problems appears in section 2. The rest of this report describes 
the application of the general principle to the specific problem of Dr. Litt’s blast model. The 
original formulation is refined and generalized and a mathematical model and computer 
code are presented to evaluate the function. 

2. Level-Curve Model Specification 

This section contains a discussion of model formulation based on specifying a geometric 
level-curve structure. An example precedes the development of a general method for the 
formulation of such models. 

2.1 An Example. Suppose F is a decreasing function on [0, w). For example, take 

F(r) = &. 
The function F can be used to create function Fi : El2 + R+ by defining 

Wr4) = F(r) = &, (2) 

where the usual Cartesian coordinates on R2 are (x, y) and polar coordinates (r, 4) on 
R2 are given by x = rcos$ and y = rsin$. In the x-y plane, level curves of Fi are 
concentric circles centered at the origin, since Fi is independent of 4. For any L E (0, 11, 
the value of r that makes Fl(r, @) = L is given by Fl(r, t#~) = F(r) = l/(1 +r2) = L, so that 
r- - F-l(L) = dm. In other words, F( dm) = L, so Fl= L on the circumference 
of a circle with radius dm and area x (1 /L - 1). It is possible to modify the definition 
of Fi and produce a function F2 that has elliptical level curves with a given eccentricity and 
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orientation. Furthermore, the value of Fi on a given circle should be equal to the value of 
F2 on an ellipse with the same area. The polar equation for an ellipse is 

r2=abq/s. 
1+tan2(@--&J 

l-s2+tan2($-&)’ 
(3) 

where the ellipse has eccentricity E = ,/w, major axis length 2a in the direction 
$J = &,, minor axis length 2b in the direction $ = &, + n/2, and area nab. The function F2 
is now defined by 

Fz(r,$)=F re j/i-T. ( [ 1+tan2($-&) -l/2 

1 ) l-c2+tan2($-&) ’ 

Then, it can be seen that F2(r, @) = L when 

r2 = ( > t-1 .J1-E2. I+tan2($-4,) 
1 -E2+tan2($-&) 

(41 

(5) 

so that F2(r, @) = L on the perimeter of an ellipse of area 7~( 1 /L - 1). (See Figures 1 and 
2 for a depiction of the level curves of these example functions.) 

2.2 The General Construction. Consider a decreasing function F : [0, co) --+ W. 
This function F can be used to create a function Fi : R2 --+ IEP by defining 

W-,$) = F(r), (6) 

where r and @J are polar coordinates. Since Fi is independent of 4, the level curves of Fi 
are concentric circles centered at the origin of IR 2. And because F is decreasing, the value 
of Fi is smaller on a larger such circle. 

It is possible to construct a version of F that has noncircular level curves with any 
specific functional form. In particular, say the level curves are to be given by 

0) = g@(u) (7) 

for various values of U. Suppose for all @ that g$ (u) is a continuous function of u, that 
g/F\,“, that g# (u) is an increasing function of u, that g@(u) is defined for all u 2 0, and . 

u+og~(u) = *. So, gq is a bijective function on [0, =J), and ge has an inverse in 
the following sense: for each fixed value of $J, the inverse function g;‘, characterized by 

g, (g,‘(u)> =g;l k@(U)) = u, is well-defined for u > 0. In fact, goI is also an increasing 
function of u on [0, ~0). 

A function F2: Et2 + IR+ satisfying equation (7) can be defined in terms of polar 
coordinates by 

F2b-d) = F(g,Yr)). (8) 

To show this, let u > 0 be constant. Then F(u) is also constant, and the locus of (r, $) which 
has F2(r,+) = F(u) is given by F(u) = F2(r,$) = F (g;l(r)). This means that u =g;‘(r), 

from which equation (7) follows. 
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3. Application to Blast Model Formulation 

Here, the results of the previous section are applied to the formulation of models for the 
maximum peak over-pressure of a detonating charge blast field. First, the basic formulation 
is discussed and then an enhanced model is presented. 

3.1 Basic Model. This model works in two-dimensional polar coordinates (r, 4) with 
the origin centered on the detonating charge. A three-dimensional spatial model for peak 
over-pressure P can be obtained by rotating a two-dimensional model, defined in the 
half-plane 0 < 4 < IC, about the x-axis. 

The development of a two-dimensional model for peak overpressure as a function of 
the polar coordinates (r, $) follows. In this report, models for peak over-pressure are based 
on the function PS(z), which gives the maximum peak over-pressure for detonation of a 
spherical TNT charge. In the definition of PS and throughout this report, the normalized 
distance coordinate 

r 
2 ZZ- 

wa 

is used, where r is measured in feet, W is charge weight in pounds, and a is a constant 
with nominal value CI = l/3. The spherical charge pressure function PS (z) itself is defined 
bY 

PS(z)=exp h-C , [ 1 (10) 

where the constants have the empirical values A = 31.97, B = 3.555, and C = 0.5. This 
function was derived from a fit to empirical data [ 11. 

The modeling concept under consideration requires a pressure function component P,, 
with a nontrivial dependence on 4, specified by a certain family of noncircular level curves. 
The function P, is derived from P, in the same way that F2 is derived from F in section 2, by 
the application of equation (8) to a specific level curve function. The level curve function 
for Pn, which gives an appropriate shape based on engineering considerations, is given by 

WJ 1 1 4Q)h 

g$(zf)=u sin2 3 

where n(u) is defined shortly, and P,, is defined by 

as in section 2. 
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Two more definitions complete the specification of P,. The function f is defined to 
be a “smooth step function” with f (0) N 0, f increasing, and f (z) + 1 as z -+ 00. To be 
specific, set 2, = 10 and take 

f(z) = k+iarctan(z-z,). (13) 
, 

The function n is defined by 

n(u) =n$ -f(4), (14) 

where n, is a positive constant. So n is a decreasing function with n(0) = n, and n(u) -+ 0 
as u + 00. The behavior of n along with the form of g4 implement the design objective 
that P, looks like P, at large distances; i.e., the level curves of P,, become circular for large 
2. 

Now with the function Pn completely specified, the conditions on ge(u) of section 2 
are indeed satisfied. The exponent 4 n (u)/m is positive and decreasing with u, so 
sin(rr2$/2)4n(u)lm is a nondecreasing function of u for fixed 9. Therefore, go (u) is 
increasing in u for any 4. The conditions of section 2 are satisfied, so a level curve_ of 
P, (z, #) is given by z = g@ (u) for u fixed, as required. 

To specify the peak overpressure model, it remains only to combine the function 
components P, and P,, in a certain way The definition of the peak overpressure model 
function P is 

(15) 

where the functions P,, Pn, and f are as previously discussed. Because of the nature of 
f , the pressure function looks like Pn for small z and like Ps for large z. Definition of the 
model is now complete. The quantities P, z, f , P,, ge, and n were specified by Dr. Owen 
Litt [l, 2, 3,4, 51, as was an implicit characterization of P,. The explicit representation of 
equation (12) for P, is a product of this report. 

In summary, the complete model is given by 

P(v#J) =f(z)P&)+ (1 -f(z))P&,9), where 
2 = r/wa, 

f(z) = 1/2+1/7r.arctan(z-z,), 

P&) = exp(A/(z +B) - C), 

n(u) = n,(l -_f(~))~ 

g@(u) = u (sin 77~@/2)~“(~)‘~, and 

Prl(W#J) = Ps(g$%)). (16) 

The quantities A, B, C, and W are constant; z0 = 10, zi = 5, and 22 = 15 are fixed model 
parameters; and m, n,, and a are model parameters to be estimated. Interpretations of 
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the parameters are as follows: m determines the direction of the Pn component, the value 
of n, makes the P,, component more or less concentrated in the direction determined by 
m, and a determines the dependence of normalized distance on charge weight. 

Now some characteristics of the model can be examined in more detail. The extreme 
point on a level curve occurs when $ = n/m and sin (n-1$/2) = 1, in which case g,/,(u) = ti 
and also g;,?m (u) = u. Then, Pn (z, n/m) = Ps (2). So, in the direction of maximum peak 
over-pressure, 4 = n/m, the P, component has the same pressure value as spherical bare 
charge, Ps. In other directions, for fixed z, the value of P,, is lower than Ps . 

For an example, set the charge weight to W = 1 and set the function parameters to 
m = 1.75, n, = 2.0, and a = l/3. Figure 3 demonstrates the level curve characterizations 
of P, and P, at the same pressure value. P,, is evaluated at the point (z,, &,) = (4, n/3). 
This point lies on the level curve z = ge (u), where g$O (u) = zO, or u = g#,-’ (zO), so a general 
point on this level curve has coordinates (g$ (u) , 4). The extreme point on this level curve, 
where 9 = n/m, has coordinates (g+, (u) , n/m) = (u, n/m). The value of P,, anywhere 
on this level curve is P, ((g$ (u), 4)) = Ps (g#-l (g$ (u))) = P, (u). Particular values for this 
example are u N 8.94 and Ps(u) N 8.49. 

Once again, in the direction of maximum peak over-pressure, $I = n/m, the P,, 
component has the same pressure value as spherical bare charge, Ps. In other directions, 
for fixed z, the value of P, is lower than P,. This may not be realistic. In the maximum 
direction, Pn should have a higher value than P,, since the blast modeled by P, is focused in 
that direction. This additional feature is implemented by incorporating into the definition 
of P,, an equivalent spherical charge weight W, that is greater than the actual charge 
weight W, effectively renormalizing the distance coordinate in equation (9), which is 
then used in equations (10) and (12). A conceptually equivalent approach is to directly 
reduce the distance argument z of Ps in equation (lo), as it is used in the definition of 
P,. Alternatively, the level curve function can be changed in the definition of P, from go, 
equation (ll), to a new function produces a higher pressure value on the level curve. 

As shown in section’3.2, these three schemes are equivalent. The net effect of any of 
them is to force a P,, level curve to correspond to a smaller P, level curve, on which the 
pressure is higher. The basic model can be modified to have this property. 

3.2 Enhanced Model. The model of the section 3.1 is generalized by the 
introduction of a new pressure function P,*, which replaces P,. The P,* component in 
the maximum direction (C#J = n/m) has the pressure value of a spherical charge of arbitrary 
weight W, (2). To increase the generality and flexibility of the model, W, is allowed to be 
a function of z rather than a constant. It is convenient to define the function M by 

so that M represents a dimensionless mass scaling ratio or magnification factor in the 
maximum direction, since W,(z) is the equivalent sphere charge weight in that direction 

I 
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(n/m) at the distance r = z W”. Now, define P,* by 

P?Xz74) = Ps (s(g9W)) 

and proceed to solve for s. When 4 = n/m, the result is 

P,*(z,+r) =P&&W)) =P@)). 

Since 2 = rW-” and s(z) = rW,(z)+ = rWmaM(z)+, 
r =zWa =s(z~)W~M(z)~, and then 

M(z) = z 
[ 1 l/a 
s(z) 

or s(z) = zM(z)-~. 

(18) 

(19) 

it follows that 

(20) 

This expresses the required function s in terms of the magnification factor M and, 
therefore, also in terms of the equivalent sphere weight W,. Note, referring to 
equation (lo), that the function s as it appears in P,(s(z)) amounts to a resealing 
of distance in the function P,. Also, the definition of P,* can be written as 
P,‘(~,@)=P,((g~oh)-l(z)),whereh-l= s, and thus making explicit the modification of the 
level curve function in the definition of P,“. So the three conceptual approaches (weight 
scaling, distance scaling, and level curve modification) to the derivation of P,* from P, are 
equivalent. 

Now, with W,(z) - W, then M(z) z 1 and S(U) = u, so that P,* = Pn. This reduces to 
the basic model of the section 3.1, where the P,, has the property that, in the maximum 
pressure direction $J = n/m, the peak overpressure is equal to that of a spherical charge of 
the same weight. 

A more realistic general formulation requires that M (0) > 1, that M(z) is a 
nonincreasing function of z, and that M(z) --+ 1 as z + 00. This behavior embodies the 
design criteria that P,’ itself looks like Ps at large distances and that the pressure P,* is 
greater than P, in the maximum direction at small distances. 

It may be possible to completely specify M through energy conservation considerations, 
but, for illustrative purposes, a piecewise continuous version of M is used. This has 
corresponding s that is easy to calculate. Let M(z) = M, > 1 for z < zl, let M(z) = 1 
for z > 22, and let M (z)~ be a linear function of z for z1 < z < z2. It is convenient to 
express piecewise function definitions in terms of the indicator function 

IT(t) = 

{ 

1, tcT 
0, t@T. 

(21) 

First define the “linear step function” L with the characteristics that L(z) = b for z < zl, 
L(z) = 1 for z 2 22, L(z) is linear for zi < z < z2, and L is continuous. The appropriate 
definition is 

qz; h~lJ2) =b.~[0,zl)(Z)+(a1+a2z).I[,,,,,](z)+1.1(,,,,)(z), WI 
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where al = 
bz2 -zl l-b 

and a2 = -. 
22 -21 22-21 

The corresponding definition for M is then 

M(z) = L(z; M,*, zl, z2)+ 

Solve for s in closed form to get 

s(z) =2/b J[o,z&) +z/(ar +a24 .&z,](z) +z +,,q(z), 

(23 

(24) 

(251 

where b = Mt, and al and a2 are given 

A complete working model is then 

by equation (23). 

p(z,~)=f(z)P,(z)+(l-f(z))P,*(z,~) where 
z = r/Wa, 

f (2) = l/2 + l/n - arctan(z --zO), 

P&) = exp(A/(z+B) - C), 

0) =&(1-f(4), 

g# (u) = u (sin r12$/2)~“(~)/~ , 

M(z) = L(z; M,a, zl, z#‘~, 
s(z) = zM (z)-~, and 

%VP) = P,(s(g;W)). (26) 

The quantities A, B, C, and W are constant; z, = 10, z1 = 5, and z2 = 15 are fixed model 
parameters; and m, n,, M,, and a are model parameters to be estimated. 

The example of section 3.1 illustrates the enhanced model. Again, the charge weight 
is W = 1 and set the function parameters are m = 1.75, n, = 2.0, and a = l/3. The new 
function parameter for mass scaling is M, = 4. Figure 4 depicts the functions M and s. 
Figure 5 demonstrates the level curve characterization of P,* in relation to that of Ps at the 
same pressure. As before, P,* is evaluated at the point (z,, &) = (4, n/3). This point lies 
on the level curve z = g$ (u) where g#O (u) = zO, or u = geO-l (zO), so a general point on this 
level curve has locus (g@(u), 4). The extreme point on this level curve, where $J = n/m, 
has coordinates (g,+,,(u), n/m) = (u, 7c/rn). 

Note that the P,* level curve is identical to the P, level curve in Figure 3, which 
illustrates the example of section 3.1. The function value is different, however, 
to reflect the increased equivalent sphere charge weight or reduced distance in P,. 
The corresponding P, level curve in Figure 5 has a radius smaller than the extreme 
distance on the P,* level curve. The value of P,’ anywhere on its level curve is 
P;( (g4 (u), 0)) = P, (s (gil(go (u)))) = Ps (s (u)), which is also the value of P, on its level 
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curve in Figure 5. Particular values for this example are u 21 8.94, s(u) 21 6.59, and 
P&(U)) N 15.6. The weight scaling factor is 

I M(u)= -!- 
[ 1 l/a 

s(u) 
Eli 2.49, (27) 

and, since W = 1, this is also the equivalent sphere charge weight in the direction $ = n/m 
at the distance r = u. These values of u, s (u), and M (u) are distinguished in Figure 4. 

4. Model Evaluation for Experiment Design 

Conducting an experiment to calibrate the model (estimate the parameters) involves 
placing pressure sensors in the detonation field of an explosive charge. The sensors must 
be placed so that optimal useful information is obtained from the experiment. Sensors 
cannot be overdriven. On the other hand, each sensor has a lower limit of resolution, 
beyond which the noise in the measurement system overrides any signal. Sensors must 
also be placed so that they register the nonspherical Pn component of the pressure field. 
It is therefore reasonable to “guess” what the model parameters are, evaluate P, and place 
the sensors accordingly 

A graphical display of the model response is useful in the design of an experiment for 
blast model parameter estimation. Since the model is a well-defined function, evaluation 
is conceptually simple: replace constants with numbers and evaluate the functions. 

The form chosen for M (z) yields a closed-form representation for s. Generally, go1 
must be evaluated numerically, even if s has a closed-form representation. Choosing 
another form for M(z) may result in s having no closed-form representation, which will 
increase computational complexity 

Figures 6-10 are contour representations of P computed with parameter values W = 1, 
m = 1.75, n, = 2.0, M, = 4, and a = l/3 on an various x - y grids. Spatial coordinates 
are equivalent to z units, since W = 1. Contour levels are indicated in the figure captions. 
Note that the logarithmic spacing of the level curves gives a better visual display than 
linear spacing would. Figure 6 has -20 < x < 20 and 0 < y < 20 to show the far field, 
Figure 10 has -1 < x < 1 and 0 < y 6 1 to show the near field, and the intervening figures 
depict intermediate ranges. Computations and graphics were done with Mathemcztica [6]; 
the code necessary to reproduce these calculations are presented in the Appendix. 

5. Model Parameter Estimation 

Data consist of empirical measurements of peak overpressure p at spatial location (r, $I), 
denoted as Pi, ri, and $i for 1 < i < N. Parameter estimates can be obtained, for example, 
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by least squares in the response or log response; i.e., 

i=l 

or 
N 

minimize~[logpi-10gP(W-ari,$~)]2, 
i=l 

(2% 

where the minimizations are conducted over the parameter vector (m, n,, M,, a). Due to 
the exponential nature of P and the error characteristics of pressure sensors, estimation 
based on 1ogP will most likely yield more accurate results than estimation based on P. 
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Figure 1. Level Curves of FI From Section 1. 

Figure 2. Level Curves of Fs From Section 1. 
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Figure 3. Level Curves for Pressure Components P, and P,,. 
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Figure 6. P at (2,3,4, 6, 9, 14, 20) psi. 
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Figure 7. P at (5, 8, 14, 22,37, 61, 100) psi. 



2.5 

-2.5 0. 2.5 

Figure 8. P at(lO, 19,37, 71,136, 261, 500) psi. 
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Figure 10. P at (50,99, 196, 387, 766, 1,516, 3,000) psi. 
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This following Mathematics code is provided for function evaluation and visualization. 
This environment is useful for preliminary investigation, function selection, and 
experiment design. Estimation procedures are not provided. Mathematics names are 
generally consistent with names in the body of this report. 

A. 1 Evaluation. Define the utility functions Seq and Lseq to create linear and 
logarithmic sequences. The resulting sequences range from a to b and contain n elements. 

(* UTILITY FUNCTIONS *) 
Ciear[Seq, Lseq]; 
SW[a_, b_, n-1 := Range[a, b, (b-a)/(n-l)]; 
Lseq[a_, b_, n-1 := Exp[Seq[Log[al, Log[b], n]]; 

Define the model constants and parameters Ao, Bo, Co, w, alpha, m, No, MO, z0, zl, and 
22. 

(* PARAMETERS & CONSTANTS *) 
Clear[Ao, Bo, Co, w, alpha, m, No, MO, z0, zl, 221; 
(* sphere function parameters *) 
Ao = 32.97; 
Bo = 3.555; 
co = 0.5; 
(* charge weight and scaling exponent *) 
w = 1.0; 
alpha = l/3.0; 
(* model parameters *) 
m = 7/4; 
No = 2.0; 
MO = 4; 
(* transition function parameters *) 
zo = 10; zl = 5; 22 = 15; 

Define the model functions f 01, f, n, k, g, gi, PSZ, and P. 

(* BLAST FUNCTIONS *) 
Clear[fOl, n, f, s, g, gi, Psz, P]; 
(* basic transition function *) 
fO1 [x-l := l/2 + ArcTan[x]/Pi; 
(* generic transition fucntion *) 
f[z_, m_, r_] := fOl[r(z-m)]; 
(* level curve exponent function *) 
n[z_, No_] := No ( 1 - f[z, z0, 11); 
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(* equivalent sphere weight function *) 
s[z_, b-, zl-, ~2-1 := z/b /; z <= zl; 
s[z_, b_, zl_, z2_] := 

z/((b z2-zl)/(zZ-zl) + (1-b)/(z2-zl)z) /; zl<z && z<z2; 
s[z__, b-1 zl_, ~2-1 := z /; z >= 22; 

(* level curve function *) 
g[z_, phi_, m_, No_, MO_] := z Sin[m phi/2]^(4 n[z,No]/m); 

(* level curve inverse function *) 
gi[z_, phi_, m_, No_, MO_] := Module[{uO, ul, u}, 

If[g[z, phi, m, No, Mo]>z, 
For[uO=z, g[uO,phi,m,No,Mo] > z, uO=uO/3]; ul=3 u0, 
For[ul=z, g[ul,phi,m,No,Mo] < z, ul=3 ul]; uO=u1/3]; 

u = FindRoot[g[u, phi, m, No, MO] = = z, {u, (~0, ul}}, 
MaxIterations -> 25][[1]][[2]]; 

ul ; 

(* sphere charge function *) 
Psz[ z-1 := Exp[Ao / ( z + Bo ) - Co]; 

(* peak overpressure model function *) 
P[x_, Y-l := Module[(r, phi, z, u0, ul, u, P}, 

r= Sqrt[x^2+y^2]; 
phi = ArcTan[x, y]; 
z = r/w-alpha; 
u = gi[z, phi, m, No, MO]; 
P = f[z,zO,l]Psz[z]+(l-f[z,zO,l])Psz[s[u,Monalpha,zl,z2]]; 
PI 

A.2 Visualization. Define the function Ptable to evaluate P (x, y) on an nx by ny 
gridwith -Xl< x<Xlanddy< y<Xl+dy. 

Ptable[Xl_, nn_] := Module[ 
Cnx, ny, dy = 0.05, x0, ~0, x, Y, yl}, 
X0 = -Xl; YO = 0; Yl = Xl; nx = nn; ny = nn/2; 
X = Seq[XO, Xl, nx]; 
Y= dy+Seq[YO, Yl, ny]; 
XP = Table[P[XHill, Y[[jlll, Ei, nx], Cj, ny]l; 
{X0, Xl, nx, YO, Yl, ny, XP}] 
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Define the function Pshow to graph XP, the result of Ptable. The other arguments are 
the lowest contour level (LO), the highest contour level (Al), and the number of countour 
levels (NL) . 

Pshow[XP_, LO_, Ll_, NL_] := Module[ 
(X0, Xl, nx, YO, Yl, ny, Ftix, Mhue, Clevels, XF}, 
x0 = XP[[l]]; Xl = XP[[2]]; nx = XP[[3]]; 
YO = XP[[4]]; Yl = XP[[5]]; ny = XP[[6]]; 
PP = XP[[7]]; 
Mhue[h_] = Hue[l, 0, 11; 
Ftix = {{{l, X0}, CO.75 1 + 0.25 nx, 0.75 X0 + 0.25 Xl}, 

IO.5 1 + 0.5 nx, 0.5 X0 + 0.5 Xl}, 
E0.25 1 + 0.75 nx, 0.25 X0 + 0.75 Xl}, {nx, Xl 

{Cl, YO}, {0.5 1 + 0.5 ny, 0.5 YO + 0.5 Yl}, 
{ny, Yl}}, None, None}; 

Clevels = Log[Lseq[LO, Ll, NL]]; 
Print[N[Round[l Exp[Clevels]] / 111; 
XF = ListContourPlot[Transpose[Log[PP]], 

AspectRatio -> l/2, ColorFunction -> Mhue, 
FrameTicks -> Ftix, Contours -> Clevels, 
ContourSmoothing -> 321; 

XFI 

A.3 Example Use. The graphics in this report were produced by the following 
commands. First, create the numerical arrays. With nn= 200, the functions are evaluated 
on a 200 x 100 grid. This takes a while. Smaller values of nn can be used for quicker, 
lower resolution results. 

nn = 200; 
XPl = Ptable[20, nn]; 
XP2 = Ptable[lO, nn]; 
XP3 = Ptable[5, nn]; 
XP4 = Ptable[2, nn]; 
XP5 = Ptable[l, nn]; 

Then, construct the graphs. 

XFl = Pshow[XPl, 2, 20, 71 
XF2 = Pshow[XP2, 5, 100, 73 
XF3 = Pshow[XP3, 10, 500, 71 
XF4 = Pshow[XP4, 20, 1500, 71 
XF5 = Pshow[XP5, 50, 3000, 71 

25 



Finally, export the graphics files. 

IS = (600, 600}; 
Display[“xfl.ps”, XFl, "EPS", ImageSize -> IS]; 
Display[“xf2.ps”, XF2, "EPS", ImageSize -> IS]; 
Display["xf3.ps", XF3, "EPS", ImageSize -> IS]; 
Display["xf4.ps", XF4, "EPS", ImageSize -> IS]; 
Display["xf5.ps", XF5, "EPS", ImageSize -> IS]; 
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